
Context Attentive Document Ranking andQuery Suggestion
Wasi Uddin Ahmad

University of California, Los Angeles
Los Angeles, CA

wasiahmad@ucla.edu

Kai-Wei Chang
University of California, Los Angeles

Los Angeles, CA
kwchang.cs@ucla.edu

Hongning Wang
University of Virginia
Charlottesville, VA
hw5x@virginia.edu

ABSTRACT
We present a context-aware neural ranking model to exploit users’
on-task search activities and enhance retrieval performance. In par-
ticular, a two-level hierarchical recurrent neural network is intro-
duced to learn search context representation of individual queries,
search tasks, and corresponding dependency structure by jointly
optimizing two companion retrieval tasks: document ranking and
query suggestion. To identify the variable dependency structure
between search context and users’ ongoing search activities, at-
tention at both levels of recurrent states are introduced. Extensive
experiment comparisons against a rich set of baseline methods and
an in-depth ablation analysis confirm the value of our proposed
approach for modeling search context buried in search tasks.

CCS CONCEPTS
• Information systems → Query suggestion; • Computing
methodologies→Ranking;Multi-task learning;Neural networks;

KEYWORDS
Search tasks, document ranking, query suggestion, neural IRmodels
ACM Reference Format:
Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2019. Context
Attentive Document Ranking and Query Suggestion. In Proceedings of the
42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’19), July 21–25, 2019, Paris, France. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3331184.3331246

1 INTRODUCTION
The scope and complexity of users’ information need never get
simpler [1]. To fulfill a complex need, e.g., job hunting, users issue a
series of queries, exam and click search results from multiple sites.
Such search behavior is usually referred to as search tasks [24, 48]
or sessions, which are characterized by rich types of user-system
interactions, implicit feedback, and temporal dependency among
the search activities. Various studies have shown that exploring
users’ on-task search activities to enrich retrieval models is effective
for improving retrieval performance, especially when users’ intent
is ambiguous. For example, through a large-scale analysis of search
engine logs, Bennett et al. [4] showed that a user’s short-term search
history becomes more important as the search session progresses.
White et al. [50] reported the use of users’ on-task behavior yielded

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00
https://doi.org/10.1145/3331184.3331246

promising gains in retrieval performance in the Microsoft Bing
search engine.

However, limited by the devised form of representation for search
context, most existing solutions model users’ on-task behavior in
an ad-hoc manner. Typically, keywords or statistical features are
extracted from previous clicks or queries [4, 43, 50], or manually
crafted rules are introduced to characterize the changes in a search
sequence [13, 52]. Those algorithms’ exploration of contextual in-
formation is thus subjected by the capacity of their employed rep-
resentation, which can hardly be exhaustive nor optimal for the
retrieval tasks of interest. For example, keyword-based methods
suffer from vocabulary gap, and statistical features become unre-
liable with sparse observations. Even if a rich set of contextual
features can be provided beforehand, the dependency structure
has to be imposed a priori, e.g., either to use the immediate one
preceding query or all queries in a task to calculate the feature
values. This cannot capture variable range dependency within a
user’s sequential search activities.

Moreover, during a search task users have to get involved in
multiple retrieval tasks. For instance, to perform a search task, not
only does a user need to respond to the system’s returned search
results (e.g., examine or click), but also to the suggested queries
(e.g., accept or revise the suggestions). Arguably, when concurrently
performing these retrieval tasks, users are motivated by the same
underlying intent, and therefore their search activities are interre-
lated across the companion retrieval tasks. This dependency reveals
fine-grained search context beyond the content of submitted search
queries and clicked documents. For example, if a user skipped a
top-ranked document, the suggestion for next query should be
less related to such documents. Inspired by these scenarios, recent
works [2, 17, 27, 34, 41] have proposed to jointly model multiple
types of user search activities. These solutions focus mostly on
using an auxiliary task to assist the target task with two objectives:
(1) leveraging large amount of cross-task data, and (2) benefiting
from a regularization effect that leads to more useful representa-
tions. However, none of these multi-task retrieval solutions model
the sequential dependency across different retrieval tasks. This in-
evitably limits their ability in exploiting information buried in a
user’s search sequence.

To address the aforementioned challenges in modeling users’ on-
task search behaviors, we present a context-aware neural retrieval
solution, Context Attentive document-Ranking and query-Suggestion
(CARS). Given a query and the user’s past search activities (e.g.,
his/her issued queries and clicks) in the same search task, CARS en-
codes them into search context representations. Based on the learnt
representations, CARS then predicts the ranking of documents for
the given query and in turn suggests the next query. To encode
search context, we employ a two-level hierarchical recurrent neu-
ral network. At the lower level, given queries and documents as a
sequence of words, we encode them using bidirectional recurrent

https://doi.org/10.1145/3331184.3331246
https://doi.org/10.1145/3331184.3331246

neural networks; and at the upper level, we introduce another layer
of recurrent states on top of the embedding vectors of queries and
documents to represent task-level search context. Each observed
action of query reformulation or result click contributes to the up-
date of task-level recurrent states, which thus serve as a learned
summary of past search activities, providing relevant information
for predicting document ranking and next query. To identify vari-
able dependency structure between search context and ongoing
user search activities, we apply attention mechanism at both levels
of recurrent states. This endows CARS to model the development
of users’ search intent in the course of search tasks.

To learn search context representation and corresponding depen-
dency structure, CARS jointly optimize for two companion retrieval
tasks, i.e., document ranking and query suggestion. CARS models
the relatedness between these two tasks via a regularized multi-task
learning approach [10]. We evaluate CARS on the AOL search log,
the largest publicly available search engine log with both authentic
user query and click information. We compared our model with a
rich set of baseline algorithms (both classical and neural IR mod-
els), which model users on-task behavior differently for document
ranking and query suggestion. Extensive experiment comparisons
and significant improvements over the baselines confirm the value
of modeling search context buried in search tasks.

2 RELATEDWORKS
Context information embedded in a search task has shown to be
useful for modeling user search intent [4, 24, 26]. A rich body of
research has explored different forms of context and search activi-
ties and built predictive models to improve retrieval performance.
The related works can be roughly categorized as data-driven v.s.,
model-driven solutions for task-based retrieval.

Data-driven solutions focus on deriving contextual features from
users’ search activities to characterize their search intent. Shen et
al. [43] extract keywords from users’ past queries and clicked docu-
ments in a search session to re-rank document for future queries.
White et al. [49, 50] develop a rich set of statistical features to
quantify context information from users’ on-task search behavior.
Xiang et al. [52] craft a collection of rules to characterize the search
context, e.g., specialization v.s., generalization, so as to extract fea-
tures by the rules. As we discussed before, data-driven solutions
are confined by their employed form of context representation, e.g.,
keywords or manually crafted rules, which is hardly generalizable
or optimal with respect to different retrieval tasks.

Model-driven solutions build predictive models about users’
search intent or future search behavior. Cao et al. [6] model the
development of users’ search intent in search sessions with a vari-
able length Hidden Markov Model, and utilize the inferred search
intent for document ranking and query suggestion. Reinforcement
learning is utilized to model user-system interactions in search
tasks [13, 30]. Syntactic changes between consecutive queries and
the relationship between query changes and retrieved documents,
are modeled to improve retrieval results. However, the predefined
model space (e.g., add/remove query terms) and state transition
structure (e.g., first-order Markov chain) forbid this type of solu-
tions from learning rich interaction between users and a system.

Encouraged by the recent success of neural network based re-
trieval solutions [5, 14, 18, 19, 29], various models have been devel-
oped to optimize session-based retrieval. Mitra et al. [32] studies

session context with a distributed representation of queries and
reformulations and uses the learned embeddings to improve query
prediction. [17, 21, 45, 51] exploited hierarchical neural architec-
tures to model a sequence of queries in the same search session.
Recently, Chen et al. [7] propose a hierarchical attention based struc-
ture to capture session- and user-level search behavior. However,
these neural models focus on learning search context representa-
tion from single retrieval tasks, e.g., document ranking or query
suggestion, and therefore cannot utilize the reinforcement between
different retrieval tasks. In addition, most solutions for search task
based representation learning do not differentiate the influence
from different actions in a sequence. For example, clicks from a
nearly duplicated query to the current query discloses more infor-
mation about a user’s current focus than those not similar to the
current query, although that nearly duplicated query might be sub-
mitted long time ago. Recognizing such variable length dependency
is crucial for modeling the search context and thus inferring users’
information need.

Multi-task learning has been explored in information retrieval
studies [17, 27, 34, 41]. The basic idea is to use one learning task as
regularization for another task. For example, Liu et al. [27] proposed
a multi-task deep neural approach to combine query classification
and document ranking, and showed improvement on both tasks.
Huang et al. [17] coupled context-aware ranking and entity recom-
mendation to enhance entity suggestion for web search. Similarly,
Salehi et al. [41] adopted semantic categorization of the query terms
to improve query segmentation. From a different angle, Ahmad et al.
[2] proposed to train a document ranker and a query recommender
jointly over a sequence of queries in a session. However, none of
the existing multi-task solutions paid attention to the dependency
structure embedded in a search task, which characterizes users’
search intent. In this work, we explicitly model the dependency
between users’ in-session query and click sequence by learning con-
text attentive representations, which mutually enhance document
ranking and query suggestion.

3 A CONTEXT ATTENTIVE RANKING AND
SUGGESTION MODEL

3.1 Problem Statement
In a search task, a user keeps formulating queries, examining and
clicking search results until his/her information need is satisfied
[24, 48]. A user’s search activities in the same task, e.g., query refor-
mulation and result clicks, often exhibit strong inter-dependency,
which provides rich context information for systems to improve
their retrieval performance [13, 26, 30, 50]. However, as the users’
information need and behavior pattern vary significantly from task
to task, modeling the search context and its use in specific retrieval
problems is the key to unleash its vast potential.

Assuming a user submits a query “it masters ny 2018”, a common
interpretation of it could be that the user is looking for the latest IT
master’s degree programs in New York. However, if we knew that
the user just followed a suggested query “software engineer ny”
several queries before, it becomes evident that the user is actually
looking for a software engineer position in New York, and he/she
has a master’s degree in IT. Hence, the search engine should pro-
mote job listings in the region that match the user’s qualification
and make more specific query suggestions (e.g., target at different

SD
1 SD

2 SD
3

SQ
1 SQ

2 SQ
3

Q1 Q2 Q3

R
anker

D2

DC
2 Q

R
ec Q3

SD
1 SD

2 SD
3

SQ
1 SQ

2 SQ
3

Q1 Q2 Q3

R
anker

D2

DC
2

Q
R

ec

R
an

ker

R
e

co
m

m
en

de
r

Query Encoder

Query Session Encoder

Document Session Encoder

in
it

ia
l s

ta
te

in
it

ia
l s

ta
te

Inner AttentionInner Attention

it masters nysoftware engineer ny it position ny healthcare2018

Inner Attention

Clicked
Documents

Documents

…..

Inner Attention
Document

Encoder

master’s degree hospital jobs

Recommender

Ranker

Encoders?

This one should give us better visibility

R
an

ker

R
eco

m
m

en
d

e
r

Query Encoder

Session-Query Encoder

Session-Click Encoder

in
it

ia
l s

ta
te

in
it

ia
l s

ta
te

…..

Inner Attention
Document

Encoder

Inner AttentionInner Attention

it masters nysoftware engineer ny it position ny healthcare2018

Inner Attention

master’s degree hospital jobs

Clicked
Documents

Documents

R
an

ker

R
e

co
m

m
e

n
d

e
r

Query Encoder

Session-Query Encoder

Session-Click Encoder

in
it

ia
l s

ta
te

in
it

ia
l s

ta
te

…..

Inner Attention
Document

Encoder

Inner AttentionInner Attention

it masters nysoftware engineer ny it position ny healthcare2018

Inner Attention

master’s degree hospital jobs

Clicked
Documents

Ranker Recommender

………..

………..

Maxout
neuron

Projection + Softmax

C
o

n
te

xt
 A

tt
e

n
ti

o
n

C
o

n
te

xt
 V

ec
to

r

Session-level
Click Attention

Session-level
Query Attention

R
an

ker

R
eco

m
m

en
de

r

Query Encoder

Session-Query Encoder

Session-Click Encoder

in
it

ia
l s

ta
te

in
it

ia
l s

ta
te

…..

Inner Attention
Document

Encoder

Inner AttentionInner Attention

it masters nysoftware engineer ny it position ny healthcare2018

Inner Attention

master’s degree hospital jobs

Clicked
Documents

Context-Attentive
Representation

Context-Attentive
Representation

Figure 1: System architecture of the Context Attentive docu-
ment Ranking and query Suggestion (CARS)model. Our key
novelty is to encode information in search actions and on-
task search context into context-attentive representations to
facilitate document ranking and query suggestion tasks.

industries). As the task progresses, if the user’s next clicked results
reflect his/her interest in healthcare industry, the system can further
customize the search results and specialize its suggested queries
(e.g., suggest names of particular companies in healthcare industry).
By inferring the user intent behind each query reformulation and
result click regarding the context of his/her immediate interaction
history, a search engine can rapidly improve its service quality as
the search task progresses.

In this work, we propose a framework to explicitly model search
context using representation learning to improve both document
ranking and query suggestion in a search task. To the best of our
knowledge, our proposed Context Attentive document Ranking and
query Suggestion (CARS) model is of its first kind where both a
user’s query and click sequences from an ongoing search task are
utilized to learn the search context representation and optimize
two distinct retrieval tasks jointly.

In a nutshell, CARS maintains a two-level hierarchical recurrent
neural network (RNN) structure for learning in-task search con-
text representation. The system architecture of CARS is illustrated
in Figure 1. At the lower level, RNN-based query and document
encoders encapsulate information in a user’s query formulation
and click actions into continuous embedding vectors; and at the up-
per level, another set of RNN-based query- and document-session
encoders take the embeddings of each search action as input and
summarize past on-task search context on the fly. Then, the learned

representations from both levels are utilized to rank documents
under the current query and suggest the next query.

Before we zoom into the details of each component, we first
specify the definitions of several important concepts and the nota-
tions. We represent a user’s search history as a sequence of queries
Q = {q1,q2, . . . ,qN }, where each query qi is associated with a
timestamp ti when the query is submitted and the corresponding
list of returned documents, Di = {di,1,di,2, . . . ,di,M }. Each query
qi is represented as the original text string that users submitted to
the search engine, and Q is ordered according to query timestamp
ti . Each returned document di,m has two attributes: its text content
and click timestamp ci,m (ci,m = 0, if it was not clicked). In general,
user clicks serve as a good proxy of relevance feedback [22, 23],
and they serve as the training signals for our document ranker. In
this work, we follow Wang et al. [48]’s definition of search tasks:

Definition (SearchTask)Given a user’s search historyQ, a search
taskTk is amaximum subset of queries inQ, such that all the queries
in Tk correspond to a particular information need.

As a result, {Tk }Kk=1 is a set of disjoint partitions of a user’s search
history Q: ∀j , k , Tj ∩ Tk = ∅ and Q =

⋃
k Tk . A related concept

in IR literature is search session [24], which is usually defined by
the inactive time between two consecutive search queries. Some
past research assumes each search session can associate with only
one particular information need, and thus they treat a session as a
task [13, 30]. This further introduces the compounding concepts of
in-session task [26] and across-session task [48]. CARS can be read-
ily applied to these different types of task (or session), as long as it
follows our definition above. In this work, we will not differentiate
between these different realizations of search tasks, but take it as
the input of our algorithm. When no ambiguity is introduced, we
will use the terminology “search task” and “search session” inter-
changeably in this paper. In addition, without further specification,
we useW: and b: to represent a trainable weight matrix and vector,
respectively as our model parameters.

3.2 Learning Search Context Representations
CARS models users’ search intent buried in search tasks by jointly
learning from retrieval tasks of document ranking and query sug-
gestion. Formally, we consider document ranking as learning a can-
didate document’s relevance to a user’s current query and search
context, and query suggestion as learning the most likely query
that follows the current query and search context. We treat queries
and documents as variable length word sequences, and a search
task as a sequence of queries and their result clicks. The key in both
learning tasks is the representation of search actions and search
context, and the dependency structure among them.

To this end, we employ hierarchical recurrent neural networks
where the lower-level networks learn the query and document
representations separately and the upper-level networks model the
variable length dependency structure in the search context.
• Lower-level Query Document Embedding. The lower-level
recurrent network creates a fixed-length vector to represent a vari-
able length word sequence (e.g., query, document). CARS employs
two networks with the same architecture to encode queries and doc-
uments separately, so as to capture their heterogeneity. In essence,
given a sequence ofT words (w1, . . . ,wT), the network first embeds
the word wt into a lw -dimensional vector xt using a pre-trained

word embedding [38]. Then, a bidirectional recurrent neural net-
work (BiLSTM) [42] with an inner-attention mechanism [28] is
used to encode the word sequence into a fixed-length vector.

Specifically, an LSTM [15] encodes an input sequence by sequen-
tially updating a hidden state. At each step t , given an input word
vector xt and the previous hidden state ht−1, the hidden state is
updated by ht = LSTM(ht−1,xt).1 To better capture information
presented in a word sequence, we use a BiLSTM (one forward and
one backward LSTM) to encode the sequence from both directions.
The BiLSTM forms a sequence of T hidden representations,

H = [h1, . . . ,hT], H ∈ R2lh×T (1)

by concatenating the hidden states generated by the two LSTM
models, where lh is the dimension of the forward and backward
LSTM hidden unit. To recognize the topical importance of each
word in a given input sequence, e.g., focus of a query, we apply
inner-attention to form a fixed-length sequence representation π
from the variable length sequence representation H ,

π = Hαh , αh = softmax
(
W α

1 tanh(W α
2 H + bα1) + b

α
2
)
, (2)

where αh ∈ RT is the attention vector, tanh(·) is an element-wise
tangent function on the input matrix, andW α

1 ,W
α
2 ,b

α
1 and bα2 are

the parameters of a two-layer perceptron to estimate the attention
vector. The attention vector assigns weight for each individual word
in the sequence, such that informative words would play a more
important role in the final sequence representation π .

When no ambiguity is invoked, we will refer to qi and di,m
as the sequence representations learnt for the i-th query and the
correspondingm-th candidate document.
• Upper-level Task Embedding. Within a search task, a user
submits a sequence of queries, examines the returned documents,
and clicks a few of them when found relevant. To encode the search
context of an on-going task, we use a pair of recurrent neural
networks that operate on top of the query and click representations
learnt from the lower level networks, and refer to them as session-
query encoder and session-click encoder respectively.

Query reformulation chain in a search task carries important
contextual information about a user’s search intent [13, 30]. To
represent search context in a query chain, we use an LSTM as the
session-query encoder. This encoder takes a sequence of learned
query representations till query qi as input and computes the corre-
sponding recurrent states by sqi = LSTM(s

q
i−1,qi), where s

q
i ∈ Rlq

is the session recurrent state at the i-th query and lq is the dimen-
sion of this LSTM’s hidden unit.

A user’s click sequence in a search task also contributes to its
search context. But research shows that user clicks reflect their
search intent from a different perspective than query reformula-
tion chain does, and also these two types of feedback introduce
distinct biases and variances in different retrieval tasks [23]. We
employ a separate task-level LSTM for the clicked documents,
which we refer to as the session-click encoder. Assume documents
{dc1 ,dc2 , . . .dcNi } ⊂ ∪t=1,2, ...,i−1Dt are the clicked documents
in the current search task Tk before query qi is submitted (ac-
cording to their click and query timestamps). The session-click
encoder sequentially visits each clicked document and at the n-th
clicked document dcn , the recurrent state of this LSTM is updated

1We follow [15] to use a shorthand in representing the LSTM cell, and the detailed
update rules can be found in that paper.

by scn = LSTM(scn−1,dcn), where s
c
n ∈ Rlc and lc is the dimension

of this LSTM’s hidden unit.
Not all the clicked documents are equally useful to construct

the search context [23], and they may depend on each other to
collectively present a complete user information need. Hence, we
employ the inner-attention used in Eq (2) over the learned click re-
current states to recognize the importance of each different clicked
document and learn their composition in an ongoing search task.
• Context Attentive Representations. In recurrent neural net-
works, it is typical to use the last hidden state as a summary of the
whole sequence. However, in the scenario of task-based retrieval,
the immediate past search action is not necessarily the most impor-
tant to model search context [4]. But it is also difficult to pre-define
the dependency structure. It is preferred to learn the dependency
structure from a user’s past interactions in the same task.

To this end, CARS learns to represent the search context till
current query qi by applying attention [7] over the whole search
sequence, which accounts for the informativeness of each past
search action regarding the search context and qi . To enhance
search context representation, the session query recurrences are
refined as follows:

s
att,q
i =

i−1∑
j=1

α
q
j s

q
j , α

q
j =

exp(q⊤i W
es
q
j)∑i−1

k=1 exp(q
⊤
i W

es
q
k)
, (3)

where α
q
j is the attention weight computed against the current

query representation qi , session query recurrence sqj , and a learnt

attention weight matrixW e . The attentive vector satt,qi integrates
the contribution of the previous in-task queries and guides the
generation of current query qi .

Similarly, we use this attention mechanism between qi and click
recurrence states [sc1 , . . . , s

c
Ni
] to form satt,ci , which represents the

document content explored by the user previously in the same task
before qi . To combine potentially complementary information from
these two task-level summary vectors, we concatenate them to form
our search context attentive representation, satti = [s

att,q
i , satt,ci]

and satti ∈ Rlq+lc . It is then used in the document ranking and
query suggestion tasks.2 We should note that the attention applied
over the past search activities recognizes their contributions in
representing the search context up to the current search action,
but not to a particular retrieval purpose, e.g., document ranking or
query suggestion. We will discuss how to optimize these task-level
representations with respect to specific retrieval tasks next.

3.3 Joint Learning of Ranking and Suggestion
In the following, we describe how we optimize the model parame-
ters to learn effective search context representations.
• Document Ranking. The goal of a document ranker is to rank
the most relevant documents to the input query on top. As we
do not have explicit relevance feedback from users, we use their
clicks as relevance labels. To simplify the model, we appeal to the
pointwise learning to rank scheme, where a ranker is designed to
predict whether a document will be clicked under a given query.
The documents are then ranked by the predicted click probabilities.
In CARS, the click prediction for them-th document under query

2We compute individual attention and in turn attentive vector for the document ranking
(α j,r ; satt,ri) and query suggestion (α j,s ; satt,si) tasks.

qi is based on the document vector di,m (see Section 3.2) and a
composed vector ui generated by the current query vector qi and
the search context attentive vector satti ,

ui =W
u
1 s

att
i +W u

2 qi + b
u , (4)

whereW u
1 ,W u

2 , bu are parameters of our ranker. Albeit user clicks
are known to be biased [23], empirical studies also show promising
results [18]. We leave more advanced click modeling and learning
to rank approaches as our future work.

Various models can be employed here to predict click based on
these two vectors. Following [16, 33], we first create an extended
matching vector to capture the similarity between di,m and ui , as
[di,m ,ui , (di,m − qi), (di,m ⊙ qi)] where ⊙ denotes element-wise
multiplication. Then we feed this matching vector to a three-layer
batch-normalized maxout network [12] to predict the click proba-
bility P(ci,m |qi ,di,m , s

att
i), denoted as oi,m .

• Query Suggestion. The query suggestion component (a.k.a. rec-
ommender) takes current query and search context as input to
predict the next query for a user as P(qi+1 |qi , satti), which can be
decomposed into a series of word-level predictions,

P(qi+1 |qi , s
att
i) =

∏ |qi+1 |

t=1
P(wt |w1:t−1,qi , s

att
i).

This can be readily estimated by the decoder in a sequence to
sequence network [47].

We use the search context attentive vector to initialize the hidden
state hdec0 in the decoder by hdec0 = tanh(W h0satti + bh0), where
W h0 ∈ Rlh×(lq+lc) and bh0 ∈ Rlh are the decoder parameters. The
recurrence is computed by: hdect = LSTM(hdect−1 ,wt−1), wherewt−1
is the previously generated word. In standard use of an LSTM-based
sequence decoder, the output sequence is generated by a recurrently
computed latent state hdect−1 and sampling the words accordingly.
This, unfortunately, cannot carry over the search context in query
word sequence generation, as the context is only used to initialize
the decoder. To enhance the influence of search context in our query
suggestion, we apply attention based on the search context satti
and current query qi in the decoding process.

During a web search, users often reformulate their query by mod-
ifying a few words from their last query. For example, more than
39% users repeat at least one term from their immediate previous
queries [20] and an average of 62% terms in a query are retained
from their previous queries [44]. Motivated by this, we predict the
t-th word in the next query qi+1 based on a constructed attention
vector ai,t that encodes the query terms in the current query qi
with respect to the latent state of decoder at the t-th generated
word: ai,t =

∑ |qi |
k=1 α

q
tkh

enc
k , where henck is the k-th column of H

when encoding qi (defined in Eq (1)). The normalized attention
weight αqtk is learned using a bilinear function,

α
q
tk =

exp((hdect)⊤W αqhenck)∑ |qi |
j=1 exp((h

dec
t)⊤W αqhencj)

, (5)

whereW αq is the parameter matrix to be learned.
We concatenate the attention vector ai,t for current query qi

with hdect , combine it with the search context vector satti by

νi,t =W
ν
1 s

att
i +W ν

2 [h
dec
t , ci,t], (6)

and generate the next wordwt in the suggested query qi+1 based
on the following probability distribution over the vocabulary V ,

P(wt |w1:t−1,qi , s
att
i) = softmax(W дenνi,t + b

дen), (7)

whereW дen ∈ R |V |×(lq+lc) and bдen ∈ R |V | are the corresponding
decoder parameters.

However, the search space for this decoding problem is expo-
nentially large, as every combination of words in the vocabulary
can be a candidate query. We follow the standard greedy decoding
algorithm to generate the next query. Specifically, the best prefix
w1:t up to length t is chosen iteratively and extended by sampling
the most probable word according to the distribution in Eq (7). The
process ends when we obtain a well-formed query containing the
unique end-of-query token.
• Optimizing the Representations via Multi-task Learning.
To better couple the document ranking and query suggestion tasks
for learning the search context representations, we adopt the regu-
larization based multi-task learning technique [10] and decompose
W u

1 (defined in Eq (4)) andW ν
1 (defined in Eq (6)) parameter ma-

trices intoW u
1 =W

share +W rank andW ν
1 =W

share +W r ecom ,
whereW u

1 ∈ Rlh×(lq+lc) andW ν
1 ∈ Rlh×(lq+lc). Here,W share is

shared between the two tasks, whileW rank andW r ecom are kept
private to the corresponding learning tasks. We choose to impose
this structure to couple the two learning tasks, otherwise they
would have full degree of freedom to over fit their own observa-
tions rather than collaboratively contribute to the shared search
context representation learning.W share is thus expected to capture
the homogeneity in the search context’s effect in these two tasks,
andW rank andW r ecom are to capture task homogeneity from task
data accordingly.

To estimate the model parameters in CARS, we minimize regu-
larized negative log-likelihoods of the document ranking and query
suggestion tasks,

LR1 + LR2 +
1
N

∑N

k=1

∑
qi ∈Tk

(
Lranker(qi) + Lrecom.(qi ;q1:i)

)
,

whereN is the number of search tasks in the training set.Lranker(qi)
is the negative log-likelihood with respect to the predicted clicks
under query qi :

Lranker(qi) = −
1
m

∑
m

(
I(ci,m > 0) log oi,m

+ I(ci,m = 0) log(1 − oi,m)
)
,

where ci,m and oi,m represent the observed user clicks and pre-
dicted click probability for them-th candidate document for query
qi . Lrecom. is the negative log-likelihood of generating query i
based on all previous queries and clicks in the task Tk :

Lrecom.(qi) = −
∑ |qi |

t=1
log P(wt |w1:t−1,q1:i−1,d),

where d ∈ {dj :k |c j :k = 1}, j ∈ {1, . . . , i − 1} and k ∈ {1, . . . ,m}.
To avoid overfitting and prevent the predicted word distributions
being highly skewed, we apply two forms of regularization. First,
we regularize the shared and private parametersW share ,W rank

andW r ecom by

LR1 = λ1∥W
share ∥2 + λ2(∥W

rank ∥2 + ∥W r ecom ∥2).

Table 1: Statistics of the constructed evaluation dataset
based on AOL search log.

Dataset Split Train Validation Test
Task 219,748 34,090 29,369
Query 566,967 88,021 76,159
Average Task Length 2.58 2.58 2.59
Average Query Length 2.86 2.85 2.90
Average Document Length 7.27 7.29 7.08
Average # Click per Query 1.08 1.08 1.11

And, we add the negative entropy regularization

LR2 = λ3
∑

w ∈V
P(w |q1:i−1,w1:t−1) log P(w |q1:i−1,w1:t−1)

as suggested in [2] to smooth the predicted word distribution.

4 EXPERIMENTS AND RESULTS
4.1 Dataset and Experimental Setups
We conduct experiments on the AOL search log data [37]. Following
[45], we use the first five weeks as background set, the next six
weeks as training set, and the remaining two weeks are divided
into half to construct validation and test sets. Note this setting is
different from [2] that randomly splits search log. The background
set is used to generate candidate queries for later query suggestion
evaluations. We removed all non-alphanumeric characters from the
queries, applied a spelling checker and a word segmentation tool,
and lower-cased all the query terms.

The AOL query log only contains clicked documents under each
query and do not record other candidate documents returned to
the users. Therefore, for a given query, [2] aggregated a list of
candidate documents, selected from the top documents ranked by
BM25 [40] and appended the recorded clicks in the list. However,
in our preliminary experiments, we observed that many recorded
clicks do not have lexical overlap concerning the queries. One
possible reason is that we crawled the recorded clicks from the AOL
search log in 2017 and many of the clicked documents’ content
updated since 2006 when the AOL log was recorded. In such a
case, a data-driven model will exploit the differences in lexical
overlapping to identify the clicked documents. To avoid such a
bias in selecting candidate documents, we appeal to the “pseudo-
laebling” technique, which has been used in prior works [9] to
construct large-scale weekly supervised data to train neural IR
models. We first collect the top 1,000 documents for each query
retrieved by BM25 and then filtered out the queries, none of whose
recorded clicks is in this set of documents. For the resulting queries,
we sampled candidate documents from a fixed size window centered
at the positions where BM25 ranks the recorded documents. Based
on this strategy, we sampled 50 candidate documents per query in
the test set, and 5 candidates per query for training and validation
sets to speed up training and reduce memory requirements. Besides,
following [11, 17, 18] we only used the document title as its content
in our experiments.

We followed [24] to segment user query logs into tasks. In each
user’s query sequence Q, we decided the boundaries between tasks
based on the similarity between two consecutive queries. To this
end, we first represented a query by averaging its query terms’
pre-trained embedding vectors and computed the cosine similarity

Table 2: Comparison between document ranking models.
The paired t-test is conducted by comparing the best and
second-best ranking models under each metric, and the test
result is presented in bold-faced (p-value < 0.05).

Model MAP MRR NDCG
@1 @3 @10

Traditional IR-models
BM25 0.230 0.206 0.206 0.269 0.319
QL 0.195 0.166 0.166 0.213 0.276
Single-task Learning
CDSSM 0.313 0.341 0.205 0.252 0.373
DUET 0.479 0.490 0.332 0.462 0.546
Match Tensor 0.481 0.501 0.345 0.472 0.555
Multi-task Learning
M-NSRF 0.491 0.502 0.348 0.474 0.557
M-Match Tensor 0.505 0.518 0.368 0.491 0.567
CARS 0.531 0.542 0.391 0.517 0.596

between the resulting vectors.3 We discarded the search tasks with
less than two queries (no in-task search context). Statistics of our
constructed experiment dataset are provided in Table 1.
• Evaluation metrics. We used Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR), and Normalized Discounted Cumu-
lative Gain (NDCG) as our evaluation metrics for the document
ranking task, where we treat the clicked documents as relevant.

For the query suggestion task, we evaluate a model’s ability to
discriminate and generate the next query. To test its discrimination
ability, we follow [45] and apply a testing model to rank a list of
candidate queries that might follow an anchor query (the second
last query of a task). We evaluate the rank of the recorded next
query among the candidates using MRR. The candidate queries
are selected as the most frequent queries (we consider at most 20
of them) following the anchor query in the background set. To
examine its generation ability, a model is applied to generate the
next query and evaluated against the true query based on F1 and
BLEU scores [35]. Both scores measure overlapping between the
generated query term sequence and ground-truth sequence.
• Baselines. We compared CARS with both classical and neural
ad-hoc retrieval models. We consider BM25 [40], Query likelihood
based Language model (QL) [39], and a context-sensitive ranking
model FixInt [43], as our classical IR baselines for document rank-
ing. To compare CARS with neural ranking models, we selected the
same set of models used in [2], and trained and evaluated them using
their publicly available implementations. To examine CARS’s per-
formance in query suggestion, we compared with the sequence to
sequence (Seq2seq) approach proposed in [3], an enhanced Seq2seq
model with attention mechanism [31], session-based suggestion
models HRED-qs [45], M-Match Tensor [2] and M-NSRF [2]. We
used the public implementation of these query suggestion models.

We carefully tuned the hyper-parameters for the baseline mod-
els.4 For all the baselines, we tune the learning rate, dropout ratio,
hidden dimension of the recurrent neural network units. For the

3We used GloVe [38] as the pre-trained word embeddings for this purpose, and used a
cosine similarity threshold of 0.5 to segment the tasks.

4We tune the hyper-parameters within a range centered around the value (with a
window size of 3 or 5) reported in the respective papers.

Table 3: Comparison between query suggestion models.
Paired t-test is conducted by comparing the best and second-
best models under each metric, and the test result is pre-
sented in bold-faced (p-value < 0.05).

Model MRR F1 BLEU
1 2 3 4

Single-task Learning
Seq2seq 0.422 0.077 8.5 0.0 0.0 0.0
Seq2seq + Attn. 0.596 0.555 52.5 30.7 18.8 11.4
HRED-qs 0.576 0.522 48.8 26.3 15.3 9.2
Multi-task Learning
M-Match Tensor 0.551 0.458 41.5 20.6 11.5 7.0
M-NSRF 0.582 0.522 49.7 26.7 16.0 9.9
CARS 0.614 0.589 55.6 36.2 25.6 19.1

models involving convolutional neural networks, we tuned the num-
ber of filters, and the filter sizes remained unchanged as reported
in their original work.
• Experiment Setup.We kept the most frequent |V | = 80k words,
and mapped all the others to an <unk> token. We trained CARS
end-to-end using mini-batch SGD (with batch size 32) with Adam
optimizer [25]. To stabilize the learning process, we normalized the
gradients if their L2 norm exceeds a threshold [36]. In CARS, the
number of hidden neurons in each of its encoders and decoders
were selected from {64, 128, 256}. The initial learning rate and
the dropout parameter [46] were selected from {10−3, 10−4} and
{0.1, 0.2, 0.3} based on its performance on validation set, respec-
tively. We set the hyper-parameters λ1, λ2, and λ3 to 10−2, 10−4,
and 10−1 after tuning on the validation set. We stopped training
if the validation performance did not improve for 5 consecutive
iterations. CARS generally stops after 20 epochs of training and
each epoch takes 20 minutes on average on a TITAN XP GPU.

4.2 Experiment Results
• Evaluation on document ranking. We report all models’ doc-
ument ranking performance in Table 2. As we can clearly observe
CARS significantly outperformed all the traditional IR and neural
IR baselines. Traditional ranking models only focus on keyword
matching, which suffer seriously from vocabulary gap. We group
the neural baselines into two groups, single-task learning and multi-
task learning models, where the latter can leverage information
from the query suggestion task. All single-task neural ranking
models only focus on per-query document matching. Although
their learnt query document representations can greatly boosted
retrieval performance in every single query, they cannot utilize any
search context in a given search task, and therefore only provided
sub-optimal search quality. Comparing with the baseline multi-task
learning models, i.e., M-NSRF and M-Match Tensor, which model
query formulation chain but not the associated click sequence,
CARS complements search context by modeling the past clicks as
well and enjoys clear benefit. Later we will perform detailed abala-
tion analysis to decompose the gain into individual components of
CARS for more in-depth performance analysis.
• Evaluation on query suggestion. We evaluate the models on
two bases: a) identifying users’ recorded next query from a list of
candidate queries (i.e., discrimination ability), and b) generating
users’ next query (i.e., generation ability). The comparison results

Table 4: Ablation study on CARS. ∗ indicates that the atten-
tion in the query recommender (Eq (5)) was turned off to
study the impact of search context precisely.

CARS Variant NDCG BLEU
@1 @3 @10 1 2

CARS 0.391 0.517 0.596 55.6 36.2
CARS w/o Attn. 0.387∗ 0.515∗ 0.594∗ 48.6∗ 26.1∗

Ablation on search context
w/o Session Query 0.379 0.505 0.586 33.7∗ 14.2∗
w/o Session Click 0.356 0.485 0.568 48.2∗ 25.6∗

Ablation on joint learning
w/o Recommender 0.379 0.505 0.585 - -
w/o Ranker - - - 55.9 36.9

are reported in Table 3. CARS outperformed all the baselines with
significant margins in both of its discrimination and generation
abilities. Although a simple sequence to sequence model only con-
siders consecutive query reformulations rather than the whole task,
the attention mechanism still makes it the second best method (i.e.,
Seq2seq + Attn). This confirms the validity of our constructed local
attentive vector (in Eq (6)) for query suggestion. CARS improves on
it by modeling the entire search task, especially the past click his-
tory. Compared with M-Match Tensor and M-NSRF, which model
the whole query reformulation chain but still failed to perform
in this evaluation, it shows the advantage of our learnt task-level
context representation and its utility to the query suggestion task.

4.3 Abalation Analysis and Discussions
We performed additional experiments by ablating CARS to analyze
how and when each component of it adds benefit to the document
ranking and query suggestion tasks. We provide the results of our
ablation study in Table 4 and discuss the significance of them next.
•Benefit ofmodeling search context. To understand the impact
of modeling search context, we alternatively striped off the two
components from the upper level task embedding layer of CARS
(i.e., session-query and session-click encoders). First, we turned
off the attention between consecutive queries defined in Eq (5) to
concentrate on the impact of in-task search context modeling. It
slightly affects the model’s ranking performance, but generates
considerable consequence on the query suggestion quality. This is
consistent with our analysis in Table 3 and again shows the impor-
tance of adjacent queries for query suggestion task. As presented in
the second block of Table 4, without modeling the in-task queries
and clicks, CARS loses 3% and 8.9% in NDCG@1; and in the mean-
while, it loses 30.7% and 0.8% in BLEU-1 (comparing to CARS w/o
attention) respectively. This result clearly suggests that modeling
in-task clicks is more important for the document ranking task and
modeling the past queries is crucial for the query suggestion task.
•Multi-task learning v.s. single-task learning.Wealternatively
disabled the document ranker and query recommender components
in CARS and reported their performance in the third block of Table 4.
When the query recommender is disabled, the ranking performance
of CARS dropped 3.1% in NDCG@1. This demonstrates the utility
of supervision signals from the query recommender to the ranker.
However, when the ranker is disabled, the query suggestion per-
formance of CARS was not influenced (and it even became slightly

(a) Ablation on search context. (b) Comparing with baselines.

(c) Evaluating generation ability. (d) Ablation on search context.

Figure 2: Comparison based on tasks with different lengths.

better). We conjecture that since we already encode the clicked doc-
uments in the context attentive vector, information from user clicks
can be utilized by the model. Therefore, adding training signals
from ranker does not provide much additional new knowledge. On
the other hand, by training CARS without document ranker, the
recommender component can focus more on the query suggestion
task, and this might introduce the performance variance.
• Effect of task length. To understand the impact of search con-
text on tasks with different lengths, we performed experiments by
splitting the test set into three groups:

(1) Short tasks (with 2 queries) – 66.5% of the test set
(2) Medium tasks (with 3–4 queries) – 27.24% of the test set
(3) Long tasks (with 5+ queries) – 6.26% of the test set

As we filtered out queries that do not have any associated clicks
when constructing the experiment dataset, we lost some longer
tasks; otherwise our test data distribution is similar to [8].

We report our findings on the models’ document ranking and
suggestion performance in Figure 2. It is clear in Figure 2a that mod-
eling the past in-task clicks is essential for boosting the document
ranking performance, especially in long search tasks. MAP dropped
6.9% and 5.6% in CARS when session-click encoder was turned off
in long and short tasks respectively. However, we can also observe
that CARS performed relatively worse in those longer tasks. We
hypothesize that those longer tasks are intrinsically more difficult.
To verify this, we included two best single-task learning baselines,
DUET and Match Tensor, in Figure 2b. And we also turned off query
recommender component in CARS to make it focus only on the
ranking task. We observed similar trend in those baseline models,
i.e., worse performance in longer tasks. In addition, we also found
better improvement in the short tasks from CARS to the best base-
line rankers than that in the long tasks, 9.3% v.s., 7.1%. This indicates
modeling the immediate search context is more important.

On the other hand, long tasks amplify the advantage of CARS in
the query suggestion task. As we can find in Figure 2c, the query

(a) (b)

Figure 3: Comparison on sample complexity among the
multi-task learning models for (a) document ranking and
(b) query suggestion tasks.

(a) Click-based attention weight
(α cj,r ; α

c
j,s) where j = 1, 2.

(b) Query-based attention weight
(αqj,r ; α

q
j,s) where j = 1, 2.

Figure 4: Attention weights (α j from Eq. (3)) over session en-
coder states at Q3 in the search task illustrated in Figure 5.
The red and blue bars represent the attentionweights for the
ranking (α :j,r) and suggestion (α :j,s) tasks.

suggestion performance measured by average BLUE score (arith-
metic mean among BLUE 1 to 4) of CARS improved 41.4% from
short tasks to long tasks. And compared with the best baseline
query recommender that models query reformulation chain in a
task, i.e., M-NSRF, better improvement was achieved with short
tasks: 40.3% in short tasks v.s., 22.9% in long tasks. This further sug-
gests CARS’s advantageous sample complexity in learning search
context. We also studied the effect of search context modeling with
respect to tasks of different lengths in Figure 2d. We turned off the
attention between consecutive queries (in Eq (5)) to better illustrate
the effect. Clearly, modeling past queries is more important for
query suggestion than modeling past clicks; but when the tasks
become longer, click history still helps boost the performance.
• Performance w.r.t. training data size. CARS models both doc-
ument ranking and query suggestion tasks and consists of multiple
encoders and decoders. As a result, it has more than 30 million pa-
rameters.5 Despite its large number of parameters, CARS converges
fairly fast, even with less data, as it effectively exploits training
signals from two companion learning tasks. Figure 3 provides a de-
tailed comparison of different models’ sample complexity, where we
only included the multi-task learning baselines as they are expected
to be more effective with less training data. The fast improving
performance of CARS in both tasks further proves the value of
modeling search context and relatedness between the two retrieval
tasks in exploiting information buried in users’ search activities.
• Effect of modeling task progression. It is important to study
how the modeled search context helps document ranking and query
suggestion when a search task is progressing. We compare the per-
formance of CARS with MNSRF and M-Match Tensor at individual
query positions in the medium and long search tasks, and report our
findings in Figure 5. It is noticeable that both ranking and query

5W дen in query decoder contains about 24 million parameters as the output vocabulary
size |V | is 80,000.

Figure 5: Ranking and suggestion performance comparison between MNSRF, M-Match Tensor, and CARS at different query
position in medium (M2–M4) and long (L2–L7) search tasks. The number after “M” or “L” indicates the query index in a task.

Table 5: An example search task with three queries and five candidate documents for each query. ✓ indicates the documents
clicked by the user and the words marked in bold are identified as the keywords (gets higher attention weights) by CARS.

suggestion performance improves steadily as a search task pro-
gresses, i.e., more search context becomes available for predicting
the next click and query. Both compared baselines benefit from it,
especially for document ranking, while CARS improves faster by
better exploiting the context. One interesting finding is, when the
search tasks get longer, the gain of CARS in query suggestion dimin-
ishes. As we can observe in Figure 5b that the difference in query
suggestion performance between MNSRF and CARS gets smaller
from query position L4 to L7. By manually inspecting the test data,
we find that users mostly keep submitting the same query when a
task gets longer. Moreover, in unusually longer tasks (with more
than 7 queries), the user queries are often very short (with only 1 or
2 terms). All the tested models can accurately repeat the previous
query by exploiting the context via the attention mechanism.
• Analysis of learnt attention. We illustrate a qualitative ex-
ample in Figure 4 and Table 5 to demonstrate the effect of learnt
context attention on the document ranking and query suggestion
tasks. In Table 5, we highlighted the top two words with the highest
self-attention weight in each query and document. Most of them
accurately identify the topical focus on the text sequence in both
queries and documents. This explains how the learnt represen-
tations of query and document help retrieval. In the meanwhile,
Figure 4 discloses how the learnt search context representation is
leveraged to predict Q3 (i.e., query suggestion) and rank documents
for it. To rank the documents under Q3, the clicked documents of Q2
(αc2,r = 0.91) impacts more than the other past clicks (αc1,r = 0.09);
but all the previous in-session queries play an approximately equal
role (αq2,r = 0.51 and αq1,r = 0.49). On the other hand, to predict Q3
for query suggestion, query Q2 (αq2,s = 0.63) impacts more than
Q1 (αq1,s = 0.37), which is expected. And clicks in Q2 (αc2,r = 0.87)

contributes more than those in Q1 (αc1,r = 0.13), which is also
meaningful. These results shed light on the potential of using the
learnt attention weights for an explanation, e.g., explaining why
the documents are ordered in this way based on historical clicks.
We leave this as our future work.

5 CONCLUSION AND FUTUREWORKS
In this work, we propose a context attentive neural retrieval model
for modeling search context in search tasks. It models search con-
text by explicitly utilizing previous queries and clicks from an
on-going search task. A two-level hierarchical recurrent neural
network is introduced to learn search context representations and
corresponding dependency structure by jointly optimizing for two
companion retrieval tasks, i.e., document ranking and query sug-
gestion. Extensive experimentation demonstrates the effectiveness
of the proposed search context modeling approach, especially the
value of each introduced components to the tasks of document
ranking and query suggestion.

Our work opens up many interesting future directions. First,
our current solution independently models users’ search tasks. As
different users might have different and consistent search strategies
and behavior patterns, modeling across-task relatedness, e.g., users’
long-term search interest, becomes necessary. Second, our solution
now passively waits for users’ next query and click. It would be
interesting to study it in an online fashion, e.g., reinforcement
learning, where the algorithm projects a user’s future search actions
and optimizes its output accordingly. Last but not least, our solution
is not limited to web search, but should be applied to any scenario
where a user sequentially interacts with a system. We would like
to explore its utility in a broader application area in future.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments.
This work was supported in part by National Science Foundation
Grant IIS-1553568, IIS-1618948, and IIS-1760523.

REFERENCES
[1] Eugene Agichtein, Ryen W White, Susan T Dumais, and Paul N Bennet. 2012.

Search, interrupted: understanding and predicting search task continuation. In
Proceedings of the 35th SIGIR. ACM, 315–324.

[2] Wasi Uddin Ahmad, Kai-Wei Chang, and Hongning Wang. 2018. Multi-Task
Learning for Document Ranking and Query Suggestion. In ICLR.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine
translation by jointly learning to align and translate. In ICLR.

[4] Paul N Bennett, Ryen WWhite, Wei Chu, Susan T Dumais, Peter Bailey, Fedor
Borisyuk, and Xiaoyuan Cui. 2012. Modeling the impact of short-and long-term
behavior on search personalization. In Proceedings of the 35th SIGIR. ACM.

[5] Alexey Borisov, Martijn Wardenaar, Ilya Markov, and Maarten de Rijke. 2018.
A Click Sequence Model for Web Search. In Proceedings of the 41st SIGIR. ACM,
45–54.

[6] Huanhuan Cao, Daxin Jiang, Jian Pei, Enhong Chen, and Hang Li. 2009. Towards
context-aware search by learning a very large variable length hidden markov
model from search logs. In Proceedings of the 18th WWW. ACM, 191–200.

[7] Wanyu Chen, Fei Cai, Honghui Chen, and Maarten de Rijke. 2018. Attention-
based Hierarchical Neural Query Suggestion. In Proceedings of the 41st SIGIR.

[8] Mostafa Dehghani, Sascha Rothe, Enrique Alfonseca, and Pascal Fleury. 2017.
Learning to attend, copy, and generate for session-based query suggestion. In
Proceedings of the 2017 CIKM. ACM, 1747–1756.

[9] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings of
the 40th SIGIR. ACM.

[10] Theodoros Evgeniou and Massimiliano Pontil. 2004. Regularized multi–task
learning. In Proceedings of the 10th SIGKDD. ACM, 109–117.

[11] Jianfeng Gao, Xiaodong He, and Jian-Yun Nie. 2010. Clickthrough-based transla-
tion models for web search: from word models to phrase models. In Proceedings
of the 19th CIKM. ACM, 1139–1148.

[12] Ian J Goodfellow, DavidWarde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. 2013. Maxout networks. In Proceedings of the 30th ICML.

[13] Dongyi Guan, Sicong Zhang, and Hui Yang. 2013. Utilizing query change for
session search. In Proceedings of the 36th SIGIR. ACM, 453–462.

[14] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th CIKM. ACM,
55–64.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natural language sentences. In NIPS.
2042–2050.

[17] Jizhou Huang, Wei Zhang, Yaming Sun, Haifeng Wang, and Ting Liu. 2018.
Improving Entity Recommendation with Search Log and Multi-Task Learning..
In Proceedings of the Twenty-Seventh IJCAI. 4107–4114.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd CIKM. ACM, 2333–2338.

[19] Aaron Jaech, Hetunandan Kamisetty, Eric Ringger, and Charlie Clarke.
2017. Match-Tensor: a Deep Relevance Model for Search. arXiv preprint
arXiv:1701.07795.

[20] Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen Cheng. 2014. Learning user
reformulation behavior for query auto-completion. In Proceedings of the 37th
SIGIR. ACM, 445–454.

[21] Jyun-Yu Jiang and Wei Wang. 2018. RIN: Reformulation Inference Network for
Context-Aware Query Suggestion. In Proceedings of the 27th CIKM. 197–206.

[22] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately interpreting clickthrough data as implicit feedback. In Proceed-
ings of the 28th SIGIR. ACM, 154–161.

[23] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, Filip Radlinski,
and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks and
query reformulations in web search. ACM Transactions on Information Systems
(TOIS) 25, 2 (2007), 7.

[24] Rosie Jones and Kristina Lisa Klinkner. 2008. Beyond the session timeout: auto-
matic hierarchical segmentation of search topics in query logs. In Proceedings of
the 17th CIKM. ACM, 699–708.

[25] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[26] Zhen Liao, Yang Song, Li-wei He, and Yalou Huang. 2012. Evaluating the effec-
tiveness of search task trails. In Proceedings of the 21st WWW. ACM, 489–498.

[27] Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng, Kevin Duh, and Ye-Yi Wang.
2015. Representation Learning Using Multi-Task Deep Neural Networks for

Semantic Classification and Information Retrieval. In Proceedings of the 2015
NAACL. 912–921.

[28] Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. 2016. Learning natural
language inference using bidirectional LSTM model and inner-attention. arXiv
preprint arXiv:1605.09090 (2016).

[29] Zhengdong Lu and Hang Li. 2013. A deep architecture for matching short texts.
In NIPS. 1367–1375.

[30] Jiyun Luo, Sicong Zhang, and Hui Yang. 2014. Win-win search: Dual-agent
stochastic game in session search. In Proceedings of the 37th SIGIR. ACM, 587–
596.

[31] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on EMNLP. 1412–1421.

[32] Bhaskar Mitra. 2015. Exploring session context using distributed representations
of queries and reformulations. In Proceedings of the 38th SIGIR. ACM, 3–12.

[33] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. 2017. Learning to Match using
Local and Distributed Representations of Text for Web Search. In Proceedings of
the 26th WWW. 1291–1299.

[34] Kyosuke Nishida, Itsumi Saito, Atsushi Otsuka, Hisako Asano, and Junji Tomita.
2018. Retrieve-and-read: Multi-task learning of information retrieval and reading
comprehension. In Proceedings of the 27th CIKM. ACM, 647–656.

[35] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th ACL. Association for Computational Linguistics, 311–318.

[36] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of
training recurrent neural networks. In Proceedings of the 30th ICML. 1310–1318.

[37] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.
In InfoScale, Vol. 152. 1.

[38] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. (2014), 1532–1543.

[39] Jay M Ponte and W Bruce Croft. 1998. A language modeling approach to infor-
mation retrieval. In Proceedings of the 21st SIGIR. ACM, 275–281.

[40] Stephen Robertson, Hugo Zaragoza, et al. 2009. The probabilistic relevance
framework: BM25 and beyond. Foundations and Trends® in Information Retrieval
3, 4 (2009), 333–389.

[41] Bahar Salehi, Fei Liu, Timothy Baldwin, and Wilson Wong. 2018. Multitask
Learning for Query Segmentation in Job Search. In Proceedings of the 2018 SIGIR.
ACM, 179–182.

[42] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[43] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Context-sensitive informa-
tion retrieval using implicit feedback. In Proceedings of the 28th SIGIR. ACM.

[44] Marc Sloan, Hui Yang, and Jun Wang. 2015. A term-based methodology for query
reformulation understanding. Information Retrieval Journal 18, 2 (2015), 145–165.

[45] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In Proceedings of the 24th CIKM.
ACM, 553–562.

[46] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of machine learning research 15, 1 (2014), 1929–1958.

[47] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In NIPS. 3104–3112.

[48] Hongning Wang, Yang Song, Ming-Wei Chang, Xiaodong He, Ryen W White,
and Wei Chu. 2013. Learning to extract cross-session search tasks. In Proceedings
of the 22nd WWW. ACM, 1353–1364.

[49] RyenWWhite, Paul N Bennett, and Susan T Dumais. 2010. Predicting short-term
interests using activity-based search context. In Proceedings of the 19th CIKM.
ACM, 1009–1018.

[50] Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongn-
ing Wang. 2013. Enhancing personalized search by mining and modeling task
behavior. In Proceedings of the 22nd WWW. ACM, 1411–1420.

[51] BinWu, Chenyan Xiong, Maosong Sun, and Zhiyuan Liu. 2018. Query Suggestion
with Feedback Memory Network. In Proceedings of the 2018 WWW. ACM, 1563–
1571.

[52] Biao Xiang, Daxin Jiang, Jian Pei, Xiaohui Sun, Enhong Chen, and Hang Li. 2010.
Context-aware ranking in web search. In Proceedings of the 33rd SIGIR. ACM,
451–458.

	Abstract
	1 Introduction
	2 Related Works
	3 A Context Attentive Ranking and Suggestion Model
	3.1 Problem Statement
	3.2 Learning Search Context Representations
	3.3 Joint Learning of Ranking and Suggestion

	4 Experiments and Results
	4.1 Dataset and Experimental Setups
	4.2 Experiment Results
	4.3 Abalation Analysis and Discussions

	5 Conclusion and Future Works
	References

